Lower central series and free resolutions of hyperplane arrangements
نویسندگان
چکیده
منابع مشابه
Lower Central Series and Free Resolutions of Hyperplane Arrangements
If M is the complement of a hyperplane arrangement, and A = H(M, k) is the cohomology ring of M over a field of characteristic 0, then the ranks, φk, of the lower central series quotients of π1(M) can be computed from the Betti numbers, bii = dimTor A i (k, k)i, of the linear strand in a minimal free resolution of k over A. We use the Cartan-Eilenberg change of rings spectral sequence to relate...
متن کاملHyperplane Arrangements and Linear Strands in Resolutions
The cohomology ring of the complement of a central complex hyperplane arrangement is the well-studied Orlik-Solomon algebra. The homotopy group of the complement is interesting, complicated, and few results are known about it. We study the ranks for the lower central series of such a homotopy group via the linear strand of the minimal free resolution of the field C over the Orlik-Solomon algebra.
متن کاملConjugation-free Groups, Lower Central Series and Line Arrangements
The quotients Gk/Gk+1 of the lower central series of a finitely presented group G are an important invariant of this group. In this work we investigate the ranks of these quotients in the case of a certain class of conjugation-free groups, which are groups generated by x1, . . . , xn and having only cyclic relations: xitxit−1 · . . . · xi1 = xit−1 · . . . · xi1xit = · · · = xi1xit · . . . · xi2...
متن کاملTriangle-Free Triangulations, Hyperplane Arrangements and Shifted Tableaux
Flips of diagonals in colored triangle-free triangulations of a convex polygon are interpreted as moves between two adjacent chambers in a certain graphic hyperplane arrangement. Properties of geodesics in the associated flip graph are deduced. In particular, it is shown that: (1) every diagonal is flipped exactly once in a geodesic between distinguished pairs of antipodes; (2) the number of ge...
متن کاملRandom Walk and Hyperplane Arrangements
Let C be the set of chambers of a real hyperplane arrangement. We study a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes various shuuing schemes used in computer science, biology, and card games. It also includes random walks on zonotopes and zonotopal tilings. We nd the stationary distributions of these Markov chains, give good bounds on the rate of convergence to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2002
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-02-03021-0